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Abstract. Band-structure calculations, semiempirical as well asab initio, have been applied
to study the electronic band gap of the new exotic natural low-dimensional MX systems (where
M = Pb or Sn and X= I, Br or Cl). Moreover, variational calculations are employed to calculate
the excitonic binding energies, whose amplification is due not only to the quantum confinement
of the excitons but also to a dielectric enhancement effect. A single set of semiempirical
parameters is sought to describe the materials; comparison of the calculations with experimental
data shows this to be successful in the case of the PbI- and PbBr-containing compounds.

In recent years, artificial systems, mainly low-dimensional (LD) systems, have been
developed which have novel physical characteristics with applications in the future
nanoelectronics industry [1]. In addition to artificial structures, synthetic crystalline
three-dimensional (3D) and LD systems with metallic or semiconducting behaviour have
been prepared and studied [2–10]. In the special case where the active material has
semiconducting behaviour, these artificial systems not only are interesting in themselves
but are also characterized by enhanced excitonic binding energyEb and enhanced oscillator
strength with respect to the corresponding 3D systems [1]. The latter properties identify
these compounds as efficient non-linear optical elements or as light-emitting diodes that can
be tuned at different wavelengths by the choice of the semiconducting compound.

In this paper, we are going to focus on synthetic 3D and LD (i.e. two-dimensional
(2D), one-dimensional (1D) and zero-dimensional (0D) semiconducting materials that have
lead halide or tin halide units as their basic building block. In particular, we present
theoretical calculations in comparison to experimental results, which concern energy gaps
and excitonic binding energies for 3D, 2D (quantum well), 1D (quantum wire) and 0D
(quantum dot) molecular structures.

The building block of the materials, which will be presented, is the MX6 octahedron,
where M= Pb or Sn and X= I, Br or Cl. In the 3D compounds with formula CH3NH3MX 3

[3], each octahedron shares all its corners with neighbours to form a 3D network (figure 1(a)).
Contrary to the structurally isomorphic CsMX3 [3], whose Cs atom occupies the12

1
2

1
2

position in the cubic lattice, the methylammonium cation C1 is disordered. The 2D materials
are of the form (C9H19NH3)2MX 4 [4] (figure 1(b)) or similar compounds which have
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different ammonium cations, such as C6H5CH2CH2NH3(C6–2) instead of nonylammonium
C9 [5]. In these compounds, each octahedron shares four coplanar corners with neighbours,
forming separate infinite layers which are held far from each other with the help of the
long C9 amine. Each layer has a thicknessLwell of about 6.34Å. Similarly, in the 1D
compound (NH2C(I) = NH2)3PbI5 [6, 7], each octahedron shares two opposite corners with
neighbours, forming separate infinite chains. Each chain has a diameter 2R of about 6.4Å
(figure 1(c)). The 0D compound has the chemical formula (CH3NH3)4PbI6 · 2H2O [8] and
consists of isolated (non-interacting) octahedra (figure 1(d)). All these compounds have
been found to be semiconductors and all the structures depicted in figure 1 form at room
temperature.

Figure 1. Crystal structures of (a) CH3NH3PbI3, (b) (C9H19NH3)2PbI4, (c)
(NH2C(I)=NH2)3PbI5 and (d) (CH3NH3)4PbI6·2H2O where large spheres are Pb atoms, medium
spheres I atoms, and small spheres O, N and C atoms.

In addition, compounds whose dimensionality lies between 2D and 3D will also be
described [2, 9, 10]. These are layered compounds containingn layers of the original 2D
structure, withn = 2, 3, 4, . . . . Compounds involving the C9 or the C6–2 ammonium cations
with n > 3 have not yet been prepared in single-crystal form.

It has been observed that the excitonic absorption, luminescence, photoluminescence
excitation and photoconductivity bands are shifted to higher energies as the dimensionality
of the compounds is decreased [2]. Also, it has been observed that the excitonic binding
energy increases as the dimensionality is decreased [2].

Band-structure calculations have been performed for these compounds by using the
formalism of the extended Ḧuckel theory (EHT) [11, 12]. X-ray crystallographic data were
used to describe the unit cells, which do not have any type of disorder except in the case
of the 2D compounds involving the C6–2 amine. In the latter cases, a larger unit cell was
adopted, which has a composition of slightly distorted octahedra, so that the in-plane halide
atoms have an occupancy factor of 0.5. Only the outer valence s and p orbitals were used
for the semiempirical calculations.

Figure 2 shows the calculated electronic band structures for some of the above
compounds, along certain high-symmetry directions of the Brillouin zone. The bands shown
include the four bands below the Fermi level and the four bands above the Fermi level
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(except for the 3D case where only three bands exist). The parameters, ionization energy
Hii and STO exponentζ , which were used are given in table 1 (for the PbI compounds).

Figure 2. Electronic band structures of (a) CH3NH3PbI3, (b) (C9H19NH3)2PbI4, (c) (NH2C(I)=
NH2)3PbI5 and (d) (CH3NH3)4PbI6 · 2H2O: – – –, the position ofEFermi .

Table 1. The parametersHii andζ for the PbI compounds.

Orbital Hii ζ

Pb 6s −15.7 2.350
Pb 6p −8.0 2.060
I 5s −18.0 2.679
I 5p −12.7 2.482

The eight parameters in table 1, which were used in the EHT calculations, were taken
from literature tables [12] and have been kept constant, except for the I 5p exponent, which
originally had the valueζ(I 5p) = 2.322. This parameter was allowed to vary in order
to obtain close agreement between the calculated band gap and the experimental band gap
in the case of the 3D PbI network. Effort was made to ensure that the minimum number
of parameters varied from their literature values in order to simplify the modelling of the
electronic properties of the relevant compounds.

It should be noted that the EHT calculations, except for the 3D case, were performed
both with and without the amines, and in both cases the 2D, 1D and 0D band gaps did not
change. In all cases, calculations showed that the compounds are direct-gap semiconductors.
In the 3D case, calculations neglecting C1 show a direct gap to appear at the R point.
Calculations involving the amine have not been performed since the amine is disordered
and there are many different orientations that it could attain. However, it is known that the
3D PbX compounds, where X= Br or Cl, which have formed either with Cs or with C1,
exhibit excitonic peaks at almost the same energies [2, 13]. Moreover, the appearance of
the band gap at R is in agreement with the calculation in [13]. Thus, we expect that band-
structure calculations with Cs will yield useful results for describing the C1 case. Indeed,
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the direct gap at R does not change, and a new indirect gap of 1.28 eV appears between
the R point and the M point, since the conduction bands have a lower energy at the M
point with the introduction of the Cs atom. The parameters used for the Cs atom were
Hii(Cs 6s) = −3.88 eV,Hii(Cs 6p) = −2.49 eV andζ(Cs 6s) = ζ(Cs 6p) = 1.06 [12]. In
particular, the compositions of the conduction and valence bands do not change appreciably
at the R point with the inclusion of the Cs atom; however, at the M point we have the same
valence band in contrast with a conduction band with an appreciable contribution from the
Cs 6p orbitals. This effect is under investigation as well asab-initio calculations for the
band gap of the 3D compounds, as will be discussed later. In all cases, the conduction
band is composed primarily of an antibonding Pb 6p–I 5s orbital, where the valence band
is mainly an antibonding Pb 6s–I 5p orbital (at least for the set of the above parameters).

In the 3D (isotropic) semiconductors based on Pb halides the excitons have been
considered to be Wannier like and thus the well known formulae

Eb = 13.6
µ

ε2
(eV) (1)

and

rB = 0.529
ε

µ
(Å) (2)

can be used in order to compute the binding energyEb and the Bohr radiusrB of the
excitons (whereε is the background dielectric constant andµ the reduced electron–hole
pair mass). For C1PbI3, ε was found to be 6.5, from reflectance spectra [14]. This value
has also been used to describe the 2D layers and the 1D wires (namelyεwell = εwire = 6.5)
of other PbI systems.

The excitonic binding energy has also been calculated for the 2D and 1D systems,
considering that the excitons are Wannier like. In all cases the effective reduced masses were
obtained from the electronic band structure. The 2D systems are made out of alternating
layers of well (MX) and barrier (amine) material. In these natural 2D systems, the barrier
material has a significantly smaller dielectric constant than the well material and that causes
profound changes in the electronic properties of the 2D systems since the electrostatic
energy of an electron–hole pair can be increased through the image charges induced on
the barrier. This effect is manifested by a dramatic increase inEb [15]. The exciton is
considered to be Wannier like. The calculations ofEb were performed by incorporating
the exact solution for the potential induced by a point charge inside a periodic dielectric
multilayer system [16]. The barrier and well have been modelled by dielectric constants
which are constant and isotropic. The electron–hole pair is assumed to exist in a specific
well only, since the barrier has a large energy gap and long length so that it prevents the
exciton from moving in another well†. The motion of the exciton is also modified by the
fact that the layer is a periodic system. In particular, from the band-structure calculations
the reduced excitonic masses were found to beµ = 0.09, 0.12 and 0.07 for the 3D, 2D
and 1D systems, respectively. Finally, the complete energy spectrum of the exciton is
described by non-linear integral equations, which give rise to singularities in the case when
the particle wavefunctions tunnel into the barrier or are quite complex in mathematical form.
For these reasons, a simple trial wavefunction was chosen for variational calculations. It
is worthwhile pointing out that the equations governing a point-charge-induced potential
in a periodic dielectric multilayer system require careful limiting procedures in all extreme
cases, such as integrating at large wavenumbers or having the ratioLwell/Lbarrier very large

† It should be pointed out that the barrier of these 2D systems does not absorb in the region of the excitonic
spectral region, as has been verified by optical experiments.
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or small. Callingφk(z, zq) the Fourier transform of the potential atz (the z axis being
perpendicular to the layer) which is produced by a point chargeq located atzq (zq in a
specific well of the multilayer system), then the actual electron–hole potential energy is

φ(re, rh, ze, zh) = 1

4π

∫
J0(k|rh − re|)k(qeφk(ze, zh) + qhφk(zh, ze)) dk

whereφk depends onεwell and onεwell/εbarrier [16]. HereJ0(x) is the Bessel function of
the first kind of integral order 0. In particular, the form ofφk for Lbarrier → ∞ is

φk(z, zq) = 2πq

kεwell

(
exp(−k|z − zq |) + 2λ

ζ 4 − λ2
{ζ 2 cosh[k(z + zq)] + λ cosh[k(z − zq)]}

)
where

ζ = exp

(
kLwell

2

)
λ = εwell − εbarrier

εwell + εbarrier

.

The two-body Hamiltonian can be expressed as

Ĥ = − h̄2

2µ
∇2 − h̄2

2me

d2

dz2
e

− h̄2

2mh

d2

dz2
h

+ φ(re, rh, ze, zh)

where the translation energy has been assumed to be zero. Using the variational principle
with the trial wavefunction, defined only forze, zh in a particular well,

ψ(ze, zh, r) =
√

8

πr2
2L2

well

exp

(
− r

r2

)
sin

(
πze

Lwell

)
sin

(
πzh

Lwell

)
wherer = |re − rh| andr2 is a free parameter,Eb was calculated. The maximum value of

E = −〈ψ|Ĥ |ψ〉 (3)

where

〈ψ|ψ〉 = 1

as a function ofr2 is the binding energy of the exciton; then the correspondingr2 is
the exciton’s 2D Bohr radiusrB . We should point out that with the choice of this trial
wavefunction the kinetic energy terms perpendicular to the layer motion (along thez axis)
vanish, as they include no fitting parameters (since the energy of an electron–hole pair has
thesez-dependent terms whether or not the attracting pair has dissociated into two free
particles). In the appendix the binding energy equation for the periodic Hamiltonian is
given, for completeness, and is used in this paper. Again, for the case whenLbarrier → ∞,
the energy takes the following form, assuming a simple trial function of the above form
(the formula is given here to illustrate the dependence ofEb on λ):

Eb = − h̄2

2µr2
2

+ 8q2
e

r2εwell

∞∑
n=−∞

λ|n|ξ(n, r2)

whereξ(n, r2) > 0 for all n, r2 and

ξ(n, r2) =
∫ ∞

0
exp(−u)

∫ 1/2

−1/2

∫ 1/2

−1/2

[cos(πx) cos(πy)]2 du dx dy√
1 + (16L2

well/r2
2u2)(x − (−1n)y − n)2

.

In the simple case whenLwell → 0 andλ = 0 we derive, upon maximization, the well
known Eb(2D) = 2µe4/h̄2ε2

well (see [1]).
Comparing figure 2 and the experimental data from [2, 7], which are summarized

in table 2, one can see that the theoretical calculations predict that, by decreasing the
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dimensionality of the PbI network, the band gap increases, as well as the binding energy of
the lowest exciton. It also predicted that the excitonic Bohr radius decreases. In all cases,
the agreement between experiment and theory is more than qualitative, and the values of
the excitonic Bohr radii confirm the initial approximation for describing the exciton as of
Wannier type. It should be noticed that, for an idealized 2D system, without dielectric
confinement (i.e.εwell/εbarrier = 1), Eb(2D) = 4Eb(3D) (assuming that the well thickness
approaches zero) [17]. This limiting case is approached by modern artificial structures such
as GaAs/AlxGa1−xAs multilayers systems (for example [106] in [1] and references therein).
For (C9)2PbI4†, εwell/εbarrier = 3.53, and then one finds thatEb(2D) = 13Eb(3D). For
these calculations,Eb(3D) = 29 meV,εbarrier = 1.84 (determined as in [18]) are considered.

Table 2. Calculated values, for the PbI systems, of the band gapEg , the lowest exciton’s
binding energyEb and the excitonic Bohr radiusrB ; the room-temperature experimental results
are given in parentheses.

Eg Eb rB

Compound Dimensionality (eV) (meV) (Å)

(C1)1PbI3 3D 1.70a (1.70)b 29c (30)b (45)d 38c

(C1)3(C9)2Pb4I13 2D (four layer) 2.07a (2.03)b 130e (60)b 22.9e

(C1)2(C9)2Pb3I10 2D (three layer) 2.19a (2.17)b 161e (96)b 20.5e

(C1)1(C9)2Pb2I7 2D (two layer) 2.37a (2.38)b 218e (181)b (> 220)d 17.5e

(C9)2PbI4 2D (one layer) 2.85a(> 2.82)b 377e(> 388)b(> 330)d 12.4e

(NH2C(I)=NH2)3PbI5 1D 3.67a(> 3.10)b 715f(> 410)b 15.5g

(C1)4PbI6 · 2H2O 0D 5.04a (3.87)b — (545)b —

a From [11] with parameters from [12] (except thatζ = 2.482 for the I 5p orbital, in order to get the best fit to
the experimental results of the 3D system); in all cases the PbI networks were taken into account; crystallographic
data from [3] (Pb–I, 3.1642̊A) and [8] Pb–I, 3.153Å) for the 3D system; crystallographic data from [4] (Pb–I,
3.194–3.206Å) for 2D (one layer) and intermediate values for the other 2D systems (i.e. four layer→ 3.18 Å,
three layer→ 3.185 Å and two layer→ 3.19 Å); crystallographic data from [6] (Pb–I, 3.153–3.287Å) for the
1D system; crystallographic data from [8] (Pb–I, 3.195–3.231Å) for the 0D system.
b From the optical absorption spectra in [2].
c From equations (1) and (2) in text.
d From the temperature dependence of photoluminescence intensities in [19].
e From a modified theory from [16], as in the text.
f Method described in this paper (see text).
g This is the value forr1 described in the text.

The calculations concerning then = 2, 3, 4 compounds were performed by creating
artificial layered structures, where the Pb–I distances were varied so that the largen

compounds have layers that are similar to the 3D compound. Calculated and experimental
results [2, 19] for these compounds are summarized in table 2. In then > 1 systems,
band-structure calculations showed that the excitonic mass is changing for the differentn-
layer systems but stays between those of 2D and 3D compounds. So, the reduced excitonic
mass was considered to have an average value of 0.107. However, the change in binding
energy upon changingµ from 0.09 (3D value) to 0.12 (2D value) increasesEb by 20 meV
and decreases the Bohr radius by 1Å for the n = 2, 3, 4 systems, which shows that the
assumption for theµ-value is valid. One expects that the properties of the 2D systems with
largen approach those of the corresponding 3D systems (see table 2).

For the (C6–2)2PbI4 compound, the interatomic distances Pb–I are 3.15–3.2Å.
Calculations of the energy gap gaveEg = 3.0 eV, while the experimental value is 2.58 eV.

† The 3D excitonic radius is 38̊A; such a well of 6.5Å thickness is a very good approximation to a real 2D
system.
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Moreover, the binding energy for this system was found to be 191 meV andrB = 14.2 Å,
for µ = 0.16 (obtained from band-structure calculations); the corresponding experimental
value of Eb is 220 meV [2]. Here,εbarrier , determined as in [18], was estimated to be
3.05. Therefore, for this system,εwell/εbarrier = 2.13 andEb(2D) = 6.58Eb(3D). In other
words, the binding energy of the system is smaller than that of the (C9)2PbI4 system as a
result of the dielectric confinement effect [15].

The Hamiltonian for the layered compounds involves three unknown parameters, i.e.
the dielectric constant of the well, the dielectric constant of the barrier and the mass of the
exciton. It has been assumed that the iodine atoms facing the barrier define an interface
plane at which the wavefunction goes to zero and is the interface at which the well’s edge
is defined. Theoretically, if there is a physical reason for such an interface plane, it may
be at varying distance from the iodine plane. In previous investigations [2, 18, 20] the
effective mass and dielectric constant of PbI2 were used or the exciton mass was used as a
fitting parameter in a simpler model of an exciton in a dielectric well. The well’s dielectric
constant is not well known, since the well is not related to any 3D structure, on which
one could perform reflectance experiments nor is it easy to perform theoretical calculations
on such an atomic-like layer since the matrix elements necessary to calculate the dielectric
constant are not known. Finally, better results in the case of wide wells could have been
obtained if thez dependence was included in the exponential form of the trial wavefunction.
There is also some uncertainty in the experimental determination for theEb-values of 2D
systems, especially forn = 3, 4, because these compounds have not yet been prepared in
single-crystal form.

For the 1D case the exciton was assumed to be formed inside a cylinder whose radiusR

is defined by the edges of the octahedra. The dielectric confinement due to the surrounding
material was also included, assuming that the barrier has infinite thickness. The Hamiltonian
for this system has the form [21]

Ĥ = − h̄2

2me

∇2
e − h̄2

2mh

∇2
h − h̄2

2µ

d2

dz2
− q2

e

εchain

√
r2
e + r2

h − 2rerh cos(θe − θh) + z2

+2q2
e

π

(
1

εchain

− 1

εbarrier

)
×

∞∑
m=−∞

∫ ∞

0
Cm(k) cos(k(ze − zh))Im(krh)Im(kre) cos[(θh − θe)m] dk

where

Cm(k) = Km(kR)K ′
m

Im(kR)K ′
m − I ′

mKm(kR)εchain/εbarrier

and

K ′
m = d(Km(kr))

dr

∣∣∣∣
r=R

I ′
m = d(Im(kr))

dr

∣∣∣∣
r=R

.

Hereεchain is the dielectric constant of the chain of PbI octahedra, andIm andKm are the
modified Bessel functions of the first and second kinds, respectively, of integral orderm.
Using the variational principle with a trial wavefunction of the form

ψ(ze, zh, re, rh) = B exp

(
−z2

r2
1

)
cos

(πre

2R

)
cos

(πrh

2R

)
B2 =

√
2

π

8π3

R4r1(π2 − 4)2
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wherer1 is a free parameter, the following equation can be derived for the binding energy
of this exciton:

Eb = − h̄2

2µr2
1

+ q2
e 4

√
27π5

εchainr1(16− 8π2 + π4)

×
∫ 1

0

∫ 1

0

∫ π

0

∫ ∞

0

[cos(πre/2) cos(πrh/2)]2rerh exp(−2z2R2/r2
1) dre drh dθ dz√

r2
e + r2

h − 2rerh cosθ + z2

+ 32π3q2
e

R(π2 − 4)2

(
1

εbarrier

− 1

εchain

)
×

∫ ∞

0
C0

( u

R

)
exp

(
− r2

1u2

8R2

) [∫ 1

0
I0(reu)re cos2

(πre

2

)
dre

]2

du. (4)

The results for the 1D system were obtained by considering that the dielectric constant
of NH2C(I)=NH2 is the same as that of C6–2 (i.e. 3.0). The model used for calculating
the 1D binding energy includes the following approximations: the dielectric constant of the
chain is the same as that of the 3D compound, and the exciton is Wannier like. The results
are summarized in table 2. One can see thatEb for the 1D system is much higher than
those for 3D systems. It should be noted that the binding energy of an idealized 1D system
is infinite [17]†.

Excitonic binding energy calculations for the 0D compound (with metal halide units)
could be evaluated with methods similar to those applied for molecules or clusters [22].
Such results are not discussed here. It should be noted that the calculated and experimental
band gaps do not agree very well for this compound. It is well known that the tight-
binding approximation works well in ‘tight’ systems and also that atomic systems with
large interatomic distances exhibit pronounced correlation effects. This is the case with the
0D compound where the Pb–I distances are the largest in this series of compounds. Thus
it is expected that the correlation effects (not included in the semiempirical method) can be
a source of disagreement for the two values ofEg in table 2 and such an effect cannot be
analysed within the semiempirical domain (especially with a single-zeta basis).

Similar calculations have been performed for the PbBr compounds, where
crystallographic data and sufficient absorption spectra were available; these are summarized
in table 3.

There are not sufficient experimental data for similar compounds with PbCl units or
Sn halide units. However, in the case of the (C6−2)2SnI4 (2D) system, considering the
experimental parameters of SnI2, theEb- andrB-values have been calculated, as well as for
similar systems (C10)2SnI4 and (C1)(C6−2)2Sn2I7; the results are in good agreement with
the experimental data [2]. Unfortunately, a single set of semiempirical parameters has not
been found for the whole series of SnI systems, so that the optical band gaps and excitonic
binding energies can be compared with the experimental data.

Thus, it should be noted that there are sets of experimental data [23] concerning the
C1SnX3 compounds, where X= Br or I, which are not completely understood or explained
in terms of the semiempirical band-structure approach presented in this paper, such as the
pseudo-metallic properties. Also, discrepancies arise in the calculated band structures of the
3D compounds. In particular, LMTO calculations [24] for the CsSnBr3 system and LCAO
calculations [13] for CsPbBr3 predict different forms of band gap transition, since the former
predicts a transition at M (due to a forbidden transition at R) and the latter, as well as this

† If the experimental gap was fitted by changing theζ for the I 5p orbital, thenµ = 0.04 me. This would have
lowered the binding energy to about 560 meV.
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Table 3. Calculated values, for the PbBr systems, of the band gapEg , the lowest exciton’s
binding energyEb and the excitonic Bohr radiusrB ; the room-temperature experimental results
are given in parentheses.

Eg Eb rB

Compound Dimensionality (eV) (meV) (Å)

(C1)1PbBr3 3D 2.470a (2.48)b — (150)b 1.45c

(C9)2PbBr4 2D (one layer) — (3.87)b 897d (733)b 6.2d

(C6–2)2PbBr4 2D (one layer) 3.89a(> 3.49)b 610d(> 430)b 7d

a As in footnote to table 2 except thatζ = 2.339 for the Br 4p orbital, in order to get the
best fit to the experimental results of the 3D system; in all cases the PbBr networks were taken
into account; crystallographic data in [28] (Pb–Br, 2.951Å) for 3D systems; crystallographic
data in [29] for the (C6–2)2PbBr4 2D system (Pb–Br, 3̊A). The parameters that were used for
the models in the text areε3D = 3.29, with µ = 0.12 and 0.2 for the 3D and 2D systems,
respectively. The width for the C9 system has been assumed to be 6Å.
b From the optical absorption spectra in [2].
c From equations (1) and (2) in text.
d From a modified theory from [16] as in the text.

Figure 3. Electronic band structures of (a) CH3NH3SnI3 and (b) (C6H5CH2CH2NH3)2SnI4:
——, ab-initio Hartree–Foch LCAO calculations; – – –, +, EHT calculations, whereζ(I 5p) =
2.47 and 2.38 for (a) and (b), respectively, so as to fit the experimental band gap. The energy
of all calculations are shifted byEFermi .

paper, predicts a direct band gap at R, since the conduction and valence wavefunctions at
this point have different parities.

Finally, ab-initio calculations have been performed on some of these LD systems,
currently with the Hartree–Fock LCAO method which is distributed as the program package
described in [25]. The description of the unit cells has been attained by using theab-initio
effective core pseudopotentials and 1s–1p pseudo-basis of [26]. Spin–orbit coupling was
not taken into account, although the pseudopotentials had been created using a relativistic
Hamiltonian. The calculations were performed on the 3D and 2D SnI systems, in order
to test the results of the semiempirical results. The band gaps are found to be different
when compared with the experimental data, probably because of correlation effects which
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are not computed in theab-initio program. This result is well known in Hartree–Fock
approaches; for example Palmer and Ladik [27] use a Moller–Plesset treatment of the
correlation energy in polyparaphenylene to reduce a Hartree–Fock band gap of 8.7–2.3 eV,
with the experimental value being 2.8 eV. The basis set which is really optimized for
molecular calculations rather than for periodic systems probably does not play an important
role in this case. Nevertheless one can see in figures 3(a) and 3(b) for the 3D and 2D
systems, respectively, that the band widths and the trends in the conduction and valence
bands are very similar for the two different methods. The bands shown in figure 3 are again
the four bands below the Fermi level and the four bands above the Fermi level. It should
be noted that the energies of the bands in the figures have been shifted byEFermi . The
relative positions of the bands with large band widths compared to the flat bands indeed vary
between the two sets of calculations. This may be ascribed to the effect of self-consistency
whose role depends on the types of band. However, the flat bands are rather low in energy
with respect to the Fermi energy and do not play a significant role in the physics of the
compounds (this is also the case for the bottom valence bands which are not shown here).
For the 3D system a Cs atom was taken into account instead of the methylammonium atom.

In conclusion, a methodology has been pursued to explain consistently the energy of
the band gap and excitonic binding energy in the new LD systems.

Appendix

The binding energy of an exciton which exists in the well region of a periodic dielectric
multilayer quantum well system will be presented. It has been derived by the formalism
described in the text, i.e. using equation (3), where all integrations except that ink-
space have been carried out. The well thickness and dielectric constant areLwell and ε,
respectively. The barrier thickness and dielectric constant areLbarrier andε1, respectively.
The equation has been divided up for convenience. We define

α = 1 + ε1/ε

2
β = 1 − α g1 = 2α2

2α − 1
x =1 + (g1−1) tanh(kLbarrier ) tanh(kLwell) y =

√
x2−(sech(kLbarrier ) sech(kLwell))2

f− = α + β
sinh(k(Lbarrier − Lwell))

sinh(k(Lbarrier + Lwell))
f+ = α − β

cosh(k(Lbarrier − Lwell))

cosh(k(Lbarrier + Lwell))

t1 = sinh(kLwell/2)xf+
yf−

t7 = − cosh

(
kLwell

2

)
tanh(k(Lbarrier + Lwell))

t17 = 32π4(α − β) sinh(kLwell/2)(t1 + t7)

tanh(k(Lbarrier + Lwell))

t2=−2 sinh2

(
kLwell

2

)
{1 − 2αβ[1 + cosh2(kLbarrier )]} t3=(α − β)2 sinh2

(
kLwell

2

)
t4 = −2(α − β)2x cosh(kLwell)

[
cosh(kLbarrier ) sinh

(
kLwell

2

)]2

t5 = cosh(kLwell) sinh2

(
kLwell

2

)
((α2 + β2) cosh(2kLbarrier ) − 2αβ)

t6 = 2(α − β) sinh(2kLbarrier ) cosh

(
kLwell

2

)
sinh3

(
kLwell

2

)
t8 = (α − β)(3(kLwell)

5 + 20π2(kLwell)
3 + 32kLwellπ

4)

2
td = cosh(kLbarrier ) cosh(kLwell) sinh(k(Lbarrier + Lwell))
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td1 = yf−
16π4

td2 = kLwell(kLwell)
2 + 4π2)

F (k) = π [(t2 + t3 + t4 + t5 + t6)/td1td + t17+ t8]

td2
2ε1

.

Then

Eb = − h̄2

2µr2
2

+ 4q2
e

r2π

∫ ∞

0

F(2k/r2)

(k2 + 1)3/2
dk.
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